
Journal of Computational Physics 229 (2010) 5879–5895
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A compatible and conservative spectral element method
on unstructured grids

Mark A. Taylor a,*, Aimé Fournier b

a Sandia National Laboratories, Albuquerque, NM, USA
b National Center for Atmospheric Research, Mesoscale and Microscale Meteorology Division, Boulder, CO, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 23 November 2009
Received in revised form 5 April 2010
Accepted 6 April 2010
Available online 13 April 2010

Keywords:
Spectral element
Finite element
Mimetic
Compatible
Support operators
Atmospheric modeling
Shallow-water equations
Sphere
Conservation
Local conservation
Unstructured grids
Cubed sphere
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.04.008

* Corresponding author. Tel.: +1 505 284 1874; fa
E-mail addresses: mataylo@sandia.gov (M.A. Tay
We derive a formulation of the spectral element method which is compatible on very gen-
eral unstructured three-dimensional grids. Here compatible means that the method retains
discrete analogs of several key properties of the divergence, gradient and curl operators:
the divergence and gradient are anti-adjoints (the negative transpose) of each other, the
curl is self-adjoint and annihilates the gradient operator, and the divergence annihilates
the curl. The adjoint relations hold globally, and at the element level with the inclusion
of a natural discrete element boundary flux term.

We then discretize the shallow-water equations on the sphere using the cubed–sphere
grid and show that compatibility allows us to locally conserve mass, energy and potential
vorticity. Conservation is obtained without requiring the equations to be in conservation
form. The conservation is exact assuming exact time integration.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The modern form of the spectral finite-element method (henceforth referred to as SEM) dates to [1], which was based on
[2]. It can be formulated as a conventional continuous Galerkin polynomial-based finite-element method. The key difference
is that the inner product uses an inexact Gauss–Lobatto quadrature. When combined with a nodal basis that interpolates the
quadrature nodes, one obtains a diagonal mass matrix. This is a very efficient way to obtain a high-order explicit method on
unstructured grids for time-dependent equations. Because of this, the SEM has been used extensively in geophysical appli-
cations including global atmospheric circulation modeling [3–9], ocean modeling [10–12] and planetary scale seismology
[13,14].

It has been recently discovered that the continuous Galerkin finite-element method is locally conservative [15]. Here we
generalize this result to the inexact-integration case of the SEM, where we also obtain a stronger form of local conservation.
Local conservation is a statement about the discrete divergence operator. Here we further generalize these results to show
that the SEM is compatible (also called mimetic or the support operator method). Compatible discretizations are those that
mimic key vector-calculus properties of the divergence, gradient and curl operators [16–22]. Compatible discretizations
. All rights reserved.
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can be formulated for finite-difference, finite-volume and finite-element methods and are considered in a common frame-
work in [23]. They are closely related to discretizations which preserve the properties of the Hamiltonian structure of the
continuum equations [24–26].

There is no formal definition of a compatible numerical method. Here we show that the compatible properties of the SEM
include:

� A divergence theorem: the discrete divergence and gradient operators are anti-adjoints (adjoints with a negative sign)
with respect to the SEM inner product.
� A Stokes theorem: the discrete curl operator is self-adjoint with respect to the SEM inner product.
� The discrete gradient operator is annihilated by the discrete curl operator.
� The discrete curl operator is annihilated by the discrete divergence operator.

The divergence/gradient global adjoint relationship is usually obtained in the SEM by defining a weak-gradient operator
as the adjoint of the divergence operator. What is shown here is that merely straightforwardly discretizing gradient and
divergence leads to matrices whose adjoint relation implies a discrete statement of the divergence theorem. That these ad-
joint relations hold globally is shown by first showing that the SEM has discrete divergence and Stokes theorems which hold
at the element level. In the continuum, the divergence theorem applied to a volume consisting of a single element includes a
boundary term: the integral of a flux term over the surface of the element. The SEM divergence theorem includes a discrete
analog of this boundary term. Because the SEM basis functions are globally continuous, the discrete flux will be equal and
opposite as computed by adjacent elements, providing local conservation. This element boundary term is similar to the ele-
ment boundary term that is explicitly included in discontinuous Galerkin (DG) methods. But in a continuous Galerkin meth-
od like the SEM, this boundary term is never computed as part of a numerical implementation. A similar concept applies to
the SEM curl operator and associated Stokes theorem.

The global divergence/gradient adjoint relationship ensures a symmetric discrete Laplacian, which is of great benefit
to iterative solvers. In Cartesian coordinates, the elemental version of this identity can be inferred from Eqs. F.54 and
F.55 in [Appendix F [27]]. The fact that this elemental divergence theorem applies to unstructured grids in curvilinear
coordinates is not generally known (as with the discrete local version of Stokes theorem). This is evidenced by the fact
that the SEM has never been considered a locally conservative method, and local conservation is equivalent to having a
discrete divergence theorem. To the best of our knowledge, the annihilator properties of the SEM described here are also
previously unknown.

In the case of energy conservation, compatible methods are of interest because they allow conservation without utilizing
a total-energy equation [17,28]. In atmospheric modeling, an early use of this property in one dimension dates to [29].
Energy is conserved by the careful mimicking of the energy balance in the original equation: the conversion between
kinetic and internal energy terms will exactly balance and the advection operator will not dissipate any kinetic energy.
Kinetic-energy dissipation, if needed, must be explicitly added in a compatible method via the introduction of limiters,
hyper-viscosity or large-eddy-simulation based approaches.

To verify our results, we use the SEM to discretize the shallow-water equations in curvilinear coordinates on the surface
of the sphere and show the method conserves mass, energy and potential vorticity.
2. Spectral-element discretization

We now give a summary of the SEM, using the traditional finite-element inner-product formulation with globally defined
continuous basis functions [30,31]. This formulation allows for a clearer illustration of the numerical properties of the meth-
od, while the more standard matrix–vector formulation [32,33] is useful for efficient numerical implementations. We pres-
ent many details which are needed later to show precisely that the method is compatible. We consider only periodic
domains, such as the surface of the sphere, so that we may ignore the boundary terms and simplify the exposition.

2.1. Discrete spaces for the SEM

We first define the discrete space used by the SEM. Let xa and ~x ¼
P3

a¼1xa~ea be the Cartesian coordinates and position
vector of a point in the reference cube [�1,1]3 and let ra and ~r be the (possibly curvilinear) coordinates and position
vector of a point in the computational domain, denoted by X. We denote the space of polynomials up to degree d in
[�1,1]3 by
Pd :¼ span
d

i;j;k¼0
ðx1Þiðx2Þjðx3Þk ¼ span

~ı2I
/~ıð~xÞ;
where I :¼ f0; . . . ; dg3 contains all the degrees and /~ıð~xÞ ¼
Q3

a¼1uia ðxaÞ; ia ¼ 0; . . . ; d, are the cardinal functions, namely poly-
nomials that interpolate the 3D degree-d Gauss–Lobatto-Legendre (GLL) nodes ~n~ı :¼

P
ania~ea. The cardinal-function expan-

sion coefficients of a function g are its GLL nodal values, so we have
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gð~xÞ ¼
X
~ı2I

gð~n~ıÞ/~ıð~xÞ ¼ gT/ð~xÞ 8g 2 Pd;

where the column matrices g ¼
X
~ı2I

gð~n~ıÞei1 � ei2 � ei3 2 Rðdþ1Þ3�1 ð1Þ

and /ð~xÞ ¼
X
~ı2I

/~ıð~xÞei1 � ei2 � ei3 2 Rðdþ1Þ3�1; ð2Þ
()T is the matrix transpose operator, ei 2 {0,1}(d+1)�1 is column i + 1 of the identity matrix I 2 {0,1}(d+1)�(d+1) and � denotes the
Kronecker product. We then decompose the computational domain X using a hexahedral finite-element mesh with a set
fXmgM

m¼1 of elements. We assume the mesh is conforming (has no hanging nodes), and that each element can be C1 mapped
to the reference element [�1,1]3. We denote this map and its inverse by
~r ¼~rð~x; mÞ; ~x ¼~xð~r; mÞ: ð3Þ
These mapping functions must agree along neighboring element boundaries (shared surfaces @Xm ¼ @X �m). This implies that
the tangential derivatives of~r will also agree along neighboring element boundaries, but the normal derivatives may not.

We can now define the piecewise-polynomial spectral-element spaces V0 and V1 as
V0 ¼ ff 2 ðL2XÞ : f ð~rð�; mÞÞ 2 Pd;8mg ¼ span
M

m¼1
f/~ıð~xð�; mÞÞg~ı2I ð4Þ

and V1 ¼ C0ðXÞ \ V0 ¼ span
L

‘¼1
U‘:
Functions in V0 are polynomial within each element but may be discontinuous at element boundaries and V1 is the sub-
space of continuous function in V0. The SEM is a Galerkin method with respect to the V1 subspace and it can be formulated
soley in terms of functions in V1. However, for some intermediate quantities used here it is useful to consider the larger V0

space. We take Md ¼ dimV0 ¼ ðdþ 1Þ3M, and L ¼ dimV1 < Md. For conforming meshes considered here, a global piecewise
cardinal-function basis fU‘ð~rÞgL

‘¼1 for V1 can be constructed by piecing together appropriate combinations of the Md possible
/~ıð~xð~r; mÞÞ in the conventional manner [34,30]. For non-conforming meshes, see [31, eq. A6]. We denote the set of L nodes
that these global basis functions interpolate by
f~r‘gL
‘¼1 :¼

[M
m¼1

~rðf~n~ıg~ı2I; mÞ; that is; U�‘ð~r‘Þ ¼ d‘;�‘: ð5Þ
For every point~r‘, there exists at least one element Xm and at least one GLL node~n~ı ¼~xð~r‘; mÞ. In 3D, if~r‘ belongs to exactly
one Xm it is an element-interior node (or global boundary node). If it belongs to exactly two Xms, it is an element-face-inte-
rior node. Otherwise it is an edge-interior or vertex node.

We also define similar spaces for 3D vectors. We introduce two families of spaces, with a subscript of either con or cov,
denoting if the contravariant or covariant components of the vectors are piecewise polynomial, respectively.
V0
con ¼ f~u 2 ðL

2XÞ3 : ua 2 V0;a ¼ 1;2;3g
and V1

con ¼ C0ðXÞ3 \ V0
con;
where ua, a = 1,2,3 are the contravariant components of ~u defined below. Vectors in V1
con are globally continuous and their

contravariant components are polynomials in each element. Similarly,
V0
cov ¼ ~u 2 L2ðXÞ3 : ub 2 V0; b ¼ 1;2;3

n o
and V0

cov ¼ C0ðXÞ3 \ V0
cov:
In this work, for functions f 2 V0, we will rely on the cardinal-function (2) expansion local to each element,
f ð~rÞ ¼
X
~ı2I

f ð~r ~n~ı; m
� �

Þ/~ıð~xð~r; mÞÞ ¼ f T
m/ð~xð~r; mÞÞ 8~r 2 Xm; ð6Þ
where the expansion coefficients are the function values at the mapped GLL nodes, and fm is defined as in (1) with
gð~xÞ ¼ f ð~rð~x; mÞÞ. We also define a column vector f ¼ ðf T

1; f
T
2; . . . ; f T

MÞ
T 2 RMd�1. As functions f in V0 can be multiple-valued

at GLL nodes that are redundant (i.e., shared by more than one element), so f contains all such values. For f 2 V1, the values at
any redundant points must all be the same. Note that since f ð~rð�; mÞÞ is a polynomial of degree d and there are d + 1 GLL nodes
along each edge, then agreement at these points is equivalent to agreement along the entire edge, as required for V1. To re-
move the extra degrees of freedom for f 2 V1 represented by these duplicate values, we rely on the expansion in terms of the
global cardinal-function basis
f ð~rÞ ¼
XL

‘¼1

f ð~r‘ÞU‘ð~rÞ ¼ �f TUð~rÞ; ð7Þ
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where �f and Uð~rÞ are defined in Appendix A. We note that for f 2 V1, we can relate f and �f by introducing the ‘‘scatter matrix”
Q such that
f ¼ Q�f ; ð8Þ

and Q ¼ ðQ 1; . . . ;Q LÞ 2 f0; 1gMd�L denotes the identity with those rows repeated that correspond to redundant degrees of
freedom [e.g., [35] p. 79] i.e., each row of the column Q ‘ 2 f0; 1gMd�1 equals the corresponding value, 0 or 1, of U‘. In this
work we restrict ourselves to conforming meshes, but note that for non-conforming meshes Q can be defined to include
interpolation factors [e.g., [35] pp. 64 & 79].

2.2. The SEM differential operators in curvilinear coordinates

We first give the standard curvilinear coordinate formulas for vector operators we will use, following [36]. Given the 3 � 3
Jacobian of the the mapping (3) from [�1,1]3 to Xm, we denote its determinant-magnitude by
J :¼ j~g1 �~g2 �~g3j; ð9Þ

where ~gb :¼ @~r
@xb

ð10Þ
is a covariant basis vector. A vector~v may be written in terms of physical or covariant or contravariant components, v[c] or vb

or va,
~v ¼
X3

c¼1

v ½c� @
~r
@rc ¼

X3

b¼1

vb~gb ¼
X3

a¼1

va~ga; ð11Þ
that are related by vb :¼ ~v �~gb and va :¼ ~v �~ga, where~ga :¼ rxa is a contravariant basis vector. The dot product and contra-
variant components of the cross product are [e.g., [36] Table 1]
~u �~v ¼
X3

a¼1

uava and ð~u�~vÞa ¼ 1
J

X3

b;c¼1

�abcubvc ð12Þ
where �abc 2 {0,±1} is the Levi–Civita symbol.
The divergence, covariant coordinates of the gradient and contravariant coordinates of the curl are [e.g., [36] eqs. 2.1.1,

2.1.4 & 2.1.6]
r �~v ¼ 1
J

X
a

@

@xa ðJv
aÞ; ðrf Þa ¼

@f
@xa and ðr �~vÞa ¼ 1

J

X
b;c

�abc @vc

@xb
: ð13Þ
In the SEM, these operators are all computed in terms of the derivatives with respect to~x in the reference element, computed
exactly (to machine precision) by differentiating the local element expansion (6). For the gradient, the covariant coordinates
ofrf ; f 2 V0 are thus computed exactly within each element. Note thatrf 2 V0

cov, but may not be in V1
cov even for f 2 V1 due

to the fact that its components will be multi-valued at element boundaries because rf computed in adjacent elements will
not necessarily agree along their shared surfaces. In the case where J is constant within each element, the SEM curl of~v 2 V0

cov

and the divergence of ~u 2 V0
con will also be exact, but as with the gradient, multiple-valued at element boundaries.

For non-constant J, these operators may not be computed exactly by the SEM due to the Jacobian factors in the operators
and the Jacobian factors that appear when converting between covariant and contravariant coordinates. In [3], these formu-
las were expanded via the product rule and all derivatives of metric terms were computed analytically. For the compatible
version of SEM, we follow [37] and evaluate these operators in the form shown in (13). The quadratic terms that appear are
first projected into V0 via interpolation at the GLL nodes and then this interpolant is differentiated exactly using (6). For
example, to compute the divergence of ~v 2 V0

con, we first compute the interpolant IðJvaÞ 2 V0 of J va, defined by
I f ð~rÞ :¼ /Tð~xð~r; mÞÞf m 8~r 2 Xm; m ¼ 1; . . . M; ð14Þ
and GLL interpolant of a product fg derives simply from the product of the GLL nodal values of f and g. This operation is just a
reinterpretation of the nodal values and is essentially free in the SEM. The derivatives of this interpolant are then computed
exactly from (6). The sum of partial derivatives are then divided by J at the GLL nodal values and thus the SEM divergence
operator rd�() is given by
r �~v � rd �~v :¼ I
1
J

X
a

@IðJvaÞ
@xa

 !
2 V0: ð15Þ
Similarly, the gradient and curl are approximated by
ðrf Þa � ðrd f Þa :¼ @f
@xa ð16Þ

and ðr �~vÞa � ðrd �~vÞa :¼
X
b;c

�abcI
1
J
@vc

@xb

� �
ð17Þ
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with rd f 2 V0
cov and rd �~v 2 V0

con. The SEM is well known for being quite efficient in computing these types of operations.
The SEM divergence, gradient and curl can all be evaluated at the (d + 1)3 GLL nodes within each element in OðdÞ operations
per node using the tensor-product property of these points [33,32]. Besides (14), we will also have use of the interpolating
projection of vectors:
I con~v :¼
X

a
IðvaÞ~ga 2 V0

con; I cov~v :¼
X

a
IðvaÞ~ga 2 V0

cov: ð18Þ
Note that for ~v 2 C0XÞ3; I conð~vÞ 2 V1
con and I covð~vÞ 2 V1

cov.

2.3. The SEM discrete inner product

Instead of using exact integration of the basis functions as in a traditional finite-element method, the SEM uses a GLL
quadrature approximation for the integral over X, that we denote by h � i. We define the unlabeled integral as the usual vol-
ume-weighted integral over the entire domain X. We can write this integral as a sum of volume-weighted integrals over the
set of elements fXmgM

m¼1 used to decompose the domain,
Z
fg ¼

XM

m¼1

Z
Xm

f g:
The integral over a single element Xm is written as an integral over [�1,1]3 by
Z
Xm

fg ¼
Z Z Z

½�1;1�3
f ð~rð�; mÞÞgð~rð�; mÞÞJm dx1 dx2 dx3 � hfgiXm

;

where we approximate the integral over [�1,1]3 by GLL quadrature,
hfgiXm
:¼
X
~ı2I

wi1 wi2 wi3 Jm
~n~ı
� �

f ~r ~n~ı; m
� �� �

g ~r ~n~ı; m
� �� �

¼ gT
mWmf m; ð19Þ
and the element mass matrix Wm for Xm is defined in Appendix A. The SEM approximation to the global integral is then nat-
urally defined as
Z

fg �
XM

m¼1

hfgiXm
¼ hfgi :¼ f TWg; and similarly h~u �~vi ¼

X
a

uT
aWva; ð20Þ

where W :¼ diag
m

Wm 2 RMd�Md :
The SEM global mass matrix for V1 is diagonal and given by QTWQ 2 RL�L. This can be seen by the fact that for f ; g 2 V1, using
(8) we can also write
hfgi ¼ �f TQTWQ�g: ð21Þ
It will be useful below to write either side of (20) in expressions, depending on the need to emphasize a function abstractly
as f or concretely in terms of its set f of mapped GLL nodal values, as would be employed in computer codes.

When applied to the product of functions f ; g 2 V0, the quadrature approximation hf gi defines a discrete inner-product in
the usual manner. The quadrature approximation can be applied to any function in C0. In particular, triple products often
occur in the weak formulation of nonlinear equations, so we note for later use that since the quadrature and interpolation
nodes coincide,
hIðfghÞi ¼ hIðfgÞhi ¼ hIðf Þghi ¼ hfghi 8f ; g;h 2 C0: ð22Þ
2.4. The SEM discrete surface integral

For an arbitrary element Xm, we will use h�i@Xm
to denote the GLL quadrature approximation to the surface area integral

over the boundary of Xm,
I
@Xm

~v � n̂dA � h~v � n̂i@Xm
;

with dA being the area measure and n̂ the outward unit normal. We now give the GLL approximation to this integral in cur-
vilinear coordinates. For
ða;b; cÞ 2 K ¼ fð1;2;3Þ; ð2;3;1Þ; ð3;1;2Þg; ð23Þ
consider the partition @Xm ¼ [ða;b;cÞ2Kð@c
þXm [ @c

�XmÞ into pairs of surfaces
@
c
	Xm :¼~rð�c

	; mÞ; ð24Þ
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where �c
	 :¼ f~x 2 ½�1;1�3 : xc ¼ 	1g denotes the corresponding end faces of the reference cube and~r (See Eq. (3)) is the map

from the reference cube into X. Two tangent vectors in @c
	Xm are~ga and~gb (10), and thus the outward normal vector and area

measure can be written
~n ¼ 	~ga �~gb and dA ¼ j~njdxadxb ð~x 2 �c
	Þ; ð25Þ
so that n̂dA ¼~ndxa dxb and we have
Z
@
c
	Xm

~v � n̂dA ¼
Z Z

�
c
	

~v �~ndxa dxb �
Xd

i;j¼0

wiwjð~v �~nÞjxa¼ni ;xb¼nj ;xc¼	1 ð26Þ
Since
 I
@Xm

~v � n̂dA ¼
X

ða;b;cÞ2K

Z
�

c
þ

~v �~ndxa dxb þ
Z
�

c
�

~v �~ndxa dxb

 !
;

it is natural to define
h~v � n̂i@Xm
¼

X
ða;b;cÞ2K

X
i;j

wiwjð~v �~nÞj
xa¼ni ;x

b¼nj ;x
c¼1

xa¼ni ;xb¼nj ;xc¼�1: ð27Þ
Eq. (27) is expressed in Appendix A in the form using matrices that would be applied to a local value-column vs
m.
2.5. The projection/Assembly operator

Let us define } : V0 ! V1 to be the unique orthogonal (self-adjoint) projection operator from V0 onto V1 w.r.t. the SEM
discrete inner product (20). The operation } is essentially the same as the common procedure in the SEM described as assem-
bly [e.g., [32] p. 7], or direct stiffness summation [e.g., [33] eq. 4.5.8]. Thus the SEM assembly procedure is not an ad hoc way to
remove the redundant degrees of freedom in V0, but is in fact the natural projection operator }. At element interior points, it
leaves the nodal values unchanged, while at element boundary points shared by multiple elements it is a Jacobian-weighted
average over all redundant values. To apply the projection } : V0

cov ! V1
cov to vectors~u, one cannot project the covariant com-

ponents since the corresponding basis vectors~gb and~ga do not necessarily agree along element faces. Instead we must define
the projection as acting on the components using a globally continuous basis such as @~r=@rc,
}ð~uÞ ¼ I cov

X
a
}ðu½a�Þ @

~r
@xa

 !
~u 2 V0

cov
with a similar definition for ~u 2 V0
con.

To write g = }f in matrix form g = P f, for column matrices g; f 2 RMd�1, we start with the fact that hU‘ gi = hU‘fi "‘. Using
(5) and (21) to write this in terms of �g 2 RL�1 we have QTWQ�g ¼ QTWf . Multiplying by the inverse mass matrix and then Q

(8), we obtain g = Q(QTWQ)�1QTWf and thus
P :¼ QðQTWQÞ�1QTW 2 RMd�Md :
The projection corresponds to a weighted sum of redundant, possibly disagreeing values, QTW, followed by the diagonal
mass matrix inversion, (QTWQ)�1, followed by a scatter to redundant agreeing values by Q [cf. [6] Eq. (14)]. One can easily
verify P is a projection (idempotent) and self-adjoint (WP is symmetric).
3. Compatibility in the SEM

3.1. The discrete divergence theorem for an element

In the continuum case, for a single element Xm, we always have
Z
Xm

~v � rf þ
Z

Xm

fr �~v ¼
I
@Xm

f~v � n̂dA:
We now show the discrete analog of this relation,
h~v � rd f iXm
þ hfrd �~viXm

¼ hf~v � n̂i@Xm
8f 2 V0;~v 2 V0

con: ð28Þ
Eq. (28) is expressed in Appendix A in the form of matrices that would be applied to local value-columns vs
m and fm. We start

by expanding the differential operators on the (28) l.h.s. using the SEM formulation as prescribed in (15). For convenience
uc :¼ IðJvcÞ 2 V0. Then
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X3

c¼1

vc @f
@xc þ

f
J
@IðJvcÞ
@xc

� �
Xm

¼
X3

c¼1

X
~ı

wi1 wi2 wi3 J vc @f
@xc þ

f
J
@IðJvcÞ
@xc

� �����
~x¼~n~ı

¼
X3

c¼1

X
~ı

wi1 wi2 wi3 uc @f
@xc þ f

@uc

@xc

� �����
~x¼~n~ı

¼
X3

c¼1

X
~ı

wi1 wi2 wi3
@fuc

@xc

����
~x¼~n~ı

ð29Þ

¼
X

ða;b;cÞ2K

X
i;j

wiwj

Z 1

�1

@fuc

@xc

����
xa¼ni ;xb¼nj

dxc ð30Þ

¼
X

ða;b;cÞ2K

X
i;j

wiwjðfucÞ
�����

xa¼ni ;x
b¼nj ;x

c¼1

xa¼ni ;xb¼nj ;xc¼�1

ð31Þ

¼
X

ða;b;cÞ2K

X
i;j

wiwjðJfvcÞ
�����
xa¼ni ;x

b¼nj ;x
c¼1

a¼ni ;xb¼nj ;xc¼�1

: ð32Þ

¼
X

ða;b;cÞ2K

X
i;j

wiwjðf~v �~nÞ
�����
xa¼ni ;x

b¼nj ;x
c¼1

xa¼ni ;xb¼nj ;xc¼�1

: ð33Þ
We note that the term @f uc/@xc above is the derivative of a polynomial of degree 2d in xa (a = 1,2,3), which should not be
confused with @IðfucÞ=@xc, the derivative of the degree d interpolant that usually appears in the SEM. Hence the (29) sum-
mand is a polynomial in xc of degree at most 2d � 1, evaluated at its GLL nodal values. Because GLL quadrature in the xc

direction is exact for such polynomials, we can replace this sum by the xc-integral (30) which is then evaluated in (31).
To get from (31) to (32), we substitute back in uc :¼ IðJvcÞ and drop the interpolation operator since the sumand is only eval-
uated at the interpolation nodes. For the last step, we use (25) and the fact that on the surface xc ¼ 	1;~v �~n ¼ vcnc ¼ 	Jvc by
(9). Combining (33) with (27) proves (28).

3.2. The discrete divergence theorem for the whole domain

In the continuum case in a periodic domain, we haveZ Z

~v � rf þ fr �~v ¼ 0
i.e., the gradient and divergence are each the anti-adjoint of the other. We now show the discrete analog of this relation,
h~v � rd f i þ hfrd �~vi ¼ 0 8f 2 V1;~v 2 V1
con: ð34Þ
A matrix notation of (34) is given in Appendix A. To show (34), we sum (28) over all elements and use (26) and (27) to show
XM

m¼1

hf~v � n̂i@Xm
¼
XM

m¼1

X
ða;b;cÞ2K

X
i;j

wiwjðf~v �~nÞ
�����
xa¼ni ;x

b¼nj ;x
c¼1

xa¼ni ;xb¼nj ;xc¼�1

¼ 0: ð35Þ
This is a sum over only GLL nodes that lie on element boundaries. For periodic domains, each of the six surfaces in the sum
over ða; b; cÞ 2 K from an element m will be shared by an adjacent element �m. Without loss of generality, assume a coordi-
nate labeling so that this surface is given by xc = 1 for Xm and xc = �1 for X �m. Since the surfaces coincide,
~rð~x; mÞjxc¼1 ¼~rð~x; �mÞjxc¼�1, the tangent vectors ~ga and ~gb (10) computed in elements Xm and X �m must agree on this surface
and thus the outward surface normal ~n (25) will be equal and opposite in elements Xm and X �m,
~nð~rð~x; mÞÞjxc¼1 ¼ �~nð~rð~x; �mÞÞjxc¼�1:
Finally, since ~v 2 V1
con, ~vð~rð~x; mÞÞ ¼ ~vð~rð~x; �mÞÞ and we see that the discrete flux out of a surface of element Xm is identical

to the flux into the adjacent element which shares that surface. The net flux when summing over all surfaces of all elements
will thus exactly cancel, establishing (35). Note that we require only that the ~rð�; mÞ agree along element boundaries for
neighboring Xm. The derivatives of these maps must be well defined within each element but their normal derivatives
are not required to agree along element boundaries.

3.3. The discrete Stokes theorem for an element

In the continuum case, we have that the curl operator is self-adjoint. Applied to a single element Xm, this takes the form of
the identity
Z

Xm

~u � r �~v �
Z

Xm

~v � r �~u ¼
I
@Xm

ð~v �~uÞ � n̂dA;
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with the SEM discrete analog
h~u � rd �~viXm
� h~v � rd �~uiXm

¼ hð~v �~uÞ � n̂i@Xm
8~u;~v 2 V0

cov: ð36Þ
A matrix notation of (36) is given in Appendix A. Using the form of the curl operator from (17), the (36) l.h.s. is
X3

c;r;s¼1

�rcs

J
ur
@vs

@xc � vr
@us

@xc

� �� �
¼
X3

c;r;s¼1

X
~ı

wi1 wi2 wi3�
rcs ur

@vs

@xc þ vs
@ur

@xc

� �����
~x¼~n~ı

ð37Þ

¼
X3

c;r;s¼1

X
~ı

wi1 wi2 wi3�
rcs @urvs

@xc

�����
~x¼~n~ı

; ð38Þ
where we changed the sign of the second (37) term by swapping r and s and using �scr = ��rcs. Following the same proce-
dure as for the discrete divergence theorem, stepping from (29) to (30), we see that the GLL quadrature will be exact with
respect to dxc for the (38) terms involving @/@xc. As in the step from (30) to (31), replacing these sums with the integrals and
changing the sum over c to a sum over the triplets (23), (38) becomes
X
ða;b;cÞ2K

X
r;s

X
i;j

wiwj�rcsðurvsÞ
�����

xa¼ni ;x
b¼nj ;x

c¼1

xa¼ni ;xb¼nj ;xc¼�1

ð39Þ
We note that on the surface xc = ±1, for ða; b; cÞ 2 K we have ð~v �~uÞ �~n ¼ 	
P

r;s�
rcsurvs which can be derived from (12) and

the fact that ~ga �~n ¼~gb �~n ¼ 0 and ~gc �~n ¼ 	J (9), (25). Thus the surface integral, (36) r.h.s., expanded using (12), (27) is
hð~v �~uÞ � n̂i@Xm
¼

X
ða;b;cÞ2K

X
i;j

wiwj

X
r;s
�rcsðvsurÞ

�����
xa¼ni ;x

b¼nj ;x
c¼1

xa¼ni ;xb¼nj ;xc¼�1

;

which equals (39), and thus we have shown (36).
3.4. The discrete Stokes theorem for the whole domain

The extension of this result to the global identity
h~u � rd �~vi � h~v � rd �~ui ¼ 0 8~u;~v 2 V1
cov; ð40Þ
proceeds exactly as in Section 3.2, by showing the boundary flux, (36) r.h.s., will sum to zero. In particular, we have that since
~u is continuous at element boundaries, then on a surface @c

	Xm (24), with a – b – c,ua and ub will also be continuous by the
same argument used to show~n is continuous (because the maps agree along boundaries) in Section 3.2. This also shows that
the result can be generalized to
hrd f � rd �~vi � h~v � rd �rd f i ¼ 0 8~v 2 V1
con; f 2 V1; ð41Þ
since in this formulation, in the flux terms ua is replaced by @f/@xa and ub is replaced by @f/@xb, both of which also agree along
element boundaries @c

	Xm if f 2 V1.
3.5. Annihilator properties: rd �rd f ¼~0;rd � rd �~w ¼ 0

Let f 2 V0 and ~w 2 V0
cov. If one simply applies the differential operators within an element using the formulations (15)–

(17), we trivially obtain rd �rd f ¼ ~0 and rd � rd �~w ¼ 0 pointwise because of symmetry:
P

ab�
abcDaDb ¼ 0 8c (that

DaDb = DbDa is evident from the tensor-product formula in Appendix A). Restricting the spaces to V1 and V1
cov so we can ap-

ply (41), these relations are equivalent to
hrd �~w � rd f i ¼ 0 8~w 2 V1
cor; f 2 V1: ð42Þ
Closely related and often important identities are
}rd � }rd f ¼~0 and }rd � }rd �~w ¼ 0 8~w 2 V1
cov; f 2 V1: ð43Þ
The procedure to establish each of these identities is identical and thus we discuss only }rd � }rd f ¼~0. We first note that
this identity is equivalent to
0 ¼ h~w � }rd � }rd f i ¼ h~w � rd � }rd f i ¼ hrd �~w � }rd f i 8~w 2 V1
cov; f 2 V1:
where we used that } is self-adjoint and }~w ¼ ~w. Combining this with (42), to show (43) it is sufficient to show
hrd �~w � ð}� 1Þrd f i ¼ 0: ð44Þ



Fig. 1. Example two-dimensional grids. On both grids the SEM has a discrete divergence and Stokes theorem andrd �rd f ¼~0 andrd � rd �~w ¼ 0. For the
unstructured grid on the left, the SEM also satisfies }rd � }rd f ¼~0 and }rd � }rd �~w ¼ 0.
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For the SEM, an analysis of (44) shows that it will be zero only for grids with certain geometric properties. We have not
developed necessary conditions for this identity. But we will note (without proof) for later use that this property will hold
for all 2D grids which satisfy:

1. All corner nodes must have redundancy of either 3 or 4.
2. For corner nodes with redundancy of 4: the 4 possible values of the Jacobian determinant (as computed within the 4 ele-

ments containing the node) must agree.

3.6. Example grids

We now consider the two-dimensional grids in Fig. 1. The grid on the left is logically Cartesian, generated by the radially
stretched, non-conformal 2D map
r1

r2

 !
 

.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1Þ2 þ ðr2Þ2

q� �
.ð1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1Þ2 þ ðr2Þ2

q r1

r2

 !
;

where .ðrÞ :¼ 2
5

rWða� rÞ þ ðr � 3
5

aÞWðr � aÞ
is a ramp that tilts smoothly at r ¼ a ¼ 7
10 between slopes 2

5 and 1, and W(x) = (1 + tanh8x)/2 is a semi-infinite window func-
tion. The grid on the right is unstructured and has all straight sided elements that can be mapped to the reference quadri-
lateral via the conventional bi-linear map. For both grids the map to the reference element is C1 within each element and
globally C0, and thus the tangential-derivative~ga and~gb (10) agree along every boundary @c

	Xm and so the SEM on these grids
will obey the discrete divergence theorem (28), (34), Stokes theorem 36, 40, 41 and rd �rdf ¼~0 and rd � rd �~w ¼ 0 iden-
tities. For the left grid, since the map is globally C1 it satisfies items 1 and 2 in Section 3.5 and thus the SEM for this grid will
also obey the }rd � }rd f ¼ ~0 and }rd � }rd �~w ¼ 0 identity. This identity will not hold for the grid on the right.

4. Shallow-water equations on the surface of the sphere

We will now apply the compatible spectral-element formulation to the shallow-water equations on the surface of the unit
sphere. We use spherical coordinates k = r1 for longitude, h = r2 for latitude and r = r3 for radius, with associated unit vectors
k̂; ĥ and k̂, respectively. We restrict our functions to the surface of the unit sphere (r = 1) and assume @/@r = 0. To discretize,
we use the cubed-sphere grid (Fig. 2) first used in [38]. Each cube face is mapped to the surface of the sphere with the equal-
angle gnomonic projection [39]. The map from the reference element [�1,1]2 to the cube face is a translation and scaling. The
composition of these two maps we denote by k = k(x1,x2) and h = h(x1,x2). For the cubed sphere, all vertex nodes have redun-
dancy 3 or 4. Within each cube face, the Jacobian of the mapping is globally C1. For the redundancy-4 nodes on the cube-face
edges, the Jacobian is also continuous by symmetry and thus this grid also satisfies items 1 and 2 in Section 3.5 and thus the
SEM on this grid will obey (43).

We solve the shallow-water equations in rotational form,
@~u
@t
¼ �xk̂�~u�r 1

2
~u2 þ gH

� �
;

@h
@t
¼ �r � h~u;



Fig. 2. Tiling the surface of the sphere with quadrilaterals. An inscribed cube is projected to the surface of the sphere. The faces of the cubed sphere are
further subdivided to form a quadrilateral grid of the desired resolution. Coordinate lines from the gnomonic equal-angle projection are shown.
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for velocity ~u and fluid thickness h, with the absolute vorticity x ¼ k̂ � ðr �~uþ 2 X
!
Þ, gravity g, rotation X

!
, and bottom-

surface elevation hs and thus fluid-surface height H = h + hs. The SEM discretization of the shallow-water system is to find
~uð�; tÞ 2 V1

cov and hð�; tÞ 2 V1 such that for all ~w 2 V1
con and w 2 V1,
~w � @
~u
@t

� �
¼ �h~w �xk̂�~ui � ~w � rdI

1
2
~u2 þ gH

� �� �
; ð45Þ

w
@h
@t

� �
¼ �hwrd � h~ui: ð46Þ
The SEM (assuming exact time integration) solves (45), (46) exactly. Note that the argument tord must be in V0, and thus we
have inserted an I operator since in general ~u2 R V0 is a polynomial of degree 2d within each element. No I operator is
needed in the remaining terms due to (22) and the the definition of rd�() in (15).

The choices ~w ¼ I conðU‘k̂Þ or I conðU‘ĥÞ take (45), (46) to assembled equations for the physical-component value-arrays
d
dt

�u½k� or d
dt

�u½h� and d
dt

�h, all members of RL�1. There are several equivalent numerical approaches to solving the resulting sys-

tem of ODEs for these three RL�1 vectors, with different efficiencies depending on the polynomial degree, implementation
issues and machine architectures [40]. The global matrix approach works directly with the RL�1 solution vectors and is a
commen view of the SEM. Here we use an elemental decomposition, where the numerical implementation works with func-
tions in the larger V0;V0

cov spaces (vectors in RMd�1 ) with projections back to V1;V1
cov (vectors in RL�1) when necessary. Note

that in all cases, the boundary integral terms that appear in the discrete divergence and Stokes theorems do not appear in the
numerical implementation. They represent flux terms that are implicit in the SEM, ensuring local conservation, but the SEM
does not make use of them directly.

With the elemental decomposition, the solution of (45), (46) is solved with the following two-step procedure. For sim-
plicity, assume a forward-Euler discretization in time:

1. From a given state hðtÞ 2 V1;~uðtÞ 2 V1
cov at time t, advance the solution within each element by Dt.
~uð
Þ �~uðtÞ
Dt

¼ �xðtÞk̂�~uðtÞ � rdI
1
2
~uðtÞ2 þ gHðtÞ

� �
ð47Þ

hð
Þ � hðtÞ
Dt

¼ �rd � hðtÞ~uðtÞ: ð48Þ
where hð
Þ 2 V0;~uð
Þ 2 V0
cov. This step is completely local to the element, making it extremely efficient on parallel computers

if each processor has one or more elements in memory. We write this step in terms of solutions in RMd�1:
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u½a�ð
Þ � u½a�ðtÞ
Dt

¼ xðtÞ�
X

b

�ab3u½b�ðtÞ �D½a� 1
2

X
b

u½b�ðtÞ�u½b�ðtÞ þ gHðtÞ
 !

;

hð
Þ � hðtÞ
Dt

¼
X

b

DbhðtÞ�ubðtÞ;

where D½a� ¼ diag
m

diag
~ı

X
c

@xc

@ra ð~rð~n~ı; mÞ; mÞDc
is the physical-component gradient matrix, x ¼ 2X3 �
P

cC
c3uc contains absolute-vorticity values, ub ¼

P
cGb;c�uc contains

covariant velocity values, Gb;c;m;~ı ¼~gb �~gcð~n~ı; mÞ contains metric-tensor values, entry i of the Hadamard-Schur product a � b is
just aibi, and other matrices are defined in Appendix A.
2. Project the solution back to V1;V1

cov:
~uðt þ DtÞ ¼ }ð~uð
ÞÞ; hðt þ DtÞ ¼ }ðhð
ÞÞ: ð49Þ
4.1. Global mass conservation

Define the discrete mass to be M :¼ hhi. Taking w = 1 in (46), applying (34) and noting that rd1 ¼~0 will be computed
exactly, we see that d

dt M ¼ @h
@t


 �
¼ 0. Mass conservation will be exact for any reasonable time stepping scheme.

If we also advect a tracer,

@q
@t
þ~u � rq ¼ 0;
by solving
w
@q
@t

� �
þ w~u � rhqh i ¼ 0; ð50Þ
then its mass hh qi is also exactly conserved with exact time-stepping. This can be seen by testing (46) with w = q and testing
(50) with w = h, summing and applying (34) to derive
d
dt
hqhi ¼ q

@h
@t

� �
þ h

@q
@t

� �
¼ �hh~u � rhqi � hqrd � h~ui ¼ 0:
4.2. Local mass conservation

To show local conservation within a single element Xm, one would like to choose a test function for (46) that takes the
value 1 in Xm and 0 elsewhere. But such a test function would belong to V0, not V1 and is thus not an allowable choice in (46).
Instead, we examine steps 1 and 2 in Section 4 separately and show each is locally conservative. Considering the mass in Xm,
MmðtÞ :¼ hhðtÞiXm
; Mmð
Þ :¼ hhð
ÞiXm

;

and applying (28)–(48), we have that
Mmð
Þ �MmðtÞ
Dt

¼ �hhðtÞ~uðtÞ � n̂i@Xm
and thus we have a strong form of local conservation for step 1. The change in mass within an element is exactly equal to the
flux of mass through the boundaries. The flux is continuous across elements and thus the flux of mass out of Xm is exactly
offset by the gain in mass of the adjacent elements.

We then apply step 2, which is mass conserving since } is self-adjoint (i.e. h}(h)i = h1}(h)i = h}(1)hi = hhi). In the case of
the SEM, } is a local operation when expressed in terms of the point values at the GLL nodes, as it is the Jacobian weighted
average over redundant nodal values at element boundaries, and thus step 2 is also locally conservative. The projection oper-
ator would also be locally conservative in a mass-lumped finite-element method. But in general, for a finite element method
with a non-diagonal mass matrix, this strong form of local conservation would be lost and instead one would have local con-
servation in the sense of [15].
4.3. Energy conservation

For the momentum Eq. (45), take the test function ~w ¼ I conðh~uÞ.
By the t-derivative chain rule and (22) we have
1
2

h
@~u2

@t

� �
¼ � h~u � rdI

1
2
~u2 þ gH

� �� �
:
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For the continuity Eq. (46), we test with
w ¼ Ið12~u2Þ and w = g H, applying (34) to the r.h.s. in both cases, to obtain
1
2
~u2 @h

@t

� �
¼ h~u � rdI

1
2
~u2

� �� �
and

1
2
@gH2

@t

* +
¼ hh~u � rdgHi:
Summing these three equations, we obtain a discrete analog of total-energy conservation:
dE
dt
¼ 0; where E ¼ 1

2
hh~u2 þ gH2i ¼ 1

2
hT
�~uT �W~uþ 1

2
gHTWH: ð51Þ
Local conservation of energy, in the sense shown in Section 4.2, can be obtained if one retains all the element boundary terms
in the above manipulations.

4.4. Potential vorticity conservation

The potential vorticity in the shallow-water equations is given by q = x/h. The equation for potential vorticity,
@q
@t
¼ �~u � rq;
written in conservation form is
@x
@t
¼ �r �x~u: ð52Þ
The SEM discretization of (45), (46) will locally conserve potential vorticity as a consequence of the compatibility of the
divergence operator and that r�rf ¼ ~0. To show this, we use }ðrd � wk̂Þ as a test function in (45). Using ~u ¼ }~u and that
} is self-adjoint, we have
ðrd � wk̂Þ � @
~u
@t

� �
¼ � ðrd � wk̂Þ � }ðxk̂�~uÞ

D E
� ðrd � wk̂Þ � }rdI

1
2
~u2 þ gH

� �� �
:

On the cubed-sphere grid, the last term vanishes by (43). Applying (40) to the remaining terms, we have
w
@x
@t

� �
¼ � k̂w � rd � }ðxk̂�~uÞ

D E
:

We further reduce the equation to the desired form by using the identities k̂ � rd � ðk̂�~vÞ ¼ rd �~v ; w @x
@t


 �
¼ hw @}ðxÞ

@t i and
}ðxk̂�~uÞ ¼ Iðk̂� }ðxÞ~uÞ. The latter two identities can be shown using the identities w ¼ }w;~u ¼ }~u, the self-adjointness
of } and (22). Combining these results, we have that
w
@}ðxÞ
@t

� �
¼ � wrd � ð}ðxÞ~uÞh i 8w 2 V1:
Thus the x diagnosed from the solution to (45) and then projected into V1 satisfies the SEM discretization of (52) and is then
locally conserved as in Section 4.2.

4.5. Test Case 5: Conservation

The compatible version of the SEM described here has been implemented in HOMME, the High-Order Method Modeling
Environment [41]. HOMME contains both spectral element and discontinuous Galerkin methods for solving two-dimen-
sional and three-dimensional equations on the sphere. Only minor modifications were needed to HOMME’s original spec-
tral-element derivative operators and inner product from [37] to make it compatible and thus conservative. We use test
case 5 from [42], a suite of well established shallow-water test cases for the sphere, to verify these new conservation prop-
erties. Test case 5 was designed to study the effectiveness of a scheme in conserving several integral invariants of the flow. It
consists of zonal flow impinging on a mountain. No analytic solution is known but a high-resolution reference solutions is
provided by the authors of [42], computed from a T213 spherical-harmonic spectral transform model [43].

We use HOMME to solve Eqs. (45), (46) exactly as written. In order to illustrate best the conservation properties of the
method, no additional filters or diffusion terms of any kind are used. HOMME normally uses an explicit leapfrog or semi-
implicit time stepping method, both of which require the use of the Robert filter. To remove this filter we replaced the
leapfrog method with the leapfrog-trapezoidal method (a trapezoidal method with leapfrog predictor [44]), which has a
large stability region that contains the imaginary axis and is easy to implement within a leapfrog based code. We use a time
step of 320 s and a grid of 1350 elements with degree-3 polynomial representation (4 � 4 GLL grid) within each element.
This grid has an average GLL grid spacing of 2 degrees at the Equator. We purposely choose degree-3 in order to demonstrate
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that the conservation results hold even when the SEM is run in a low order (by SEM standards) configuration and thus do not
rely on low truncation error.

A contour plot of the solution from this configuration after 15 days, is shown in Fig. 3. The l1,l2 and l1 errors at this final
time, normalized as in [42], are 0.00043, 0.00061 and 0.0087 respectively. The l2 error is close to the uncertainty level in the
reference solution (estimated in [3] as 0.00072) and matches the error level obtained by the non-compatible SEM results at
1.4 degree grid spacing in [3].

For this simulation, the discrete total mass is conserved to 15 digits after 15 days. The integrals of divergence and x (mass
weighted potential vorticity) remain below 10�20 for the 15 day simulation. We do not expect exact energy conservation,
since the compatible SEM conserves energy exactly only with exact time stepping. But any energy conservation errors must
be due entirely to the time discretization. On a fixed grid with a second-order accurate time stepping method this error
should decrease to machine precision as O((Dt)2). We show this result in Fig. 4, plotting (E � E0)/E0, where E is the energy
(defined in (51)) after 15 days and E0 is its initial value. At the smallest time step, Dt = 1 s, (E � E0)/E0 = �0.95 � 10�13. Test
case 5 also considers the total potential enstrophy, P = hhx2i. In HOMME, this quantity is only conserved to truncation error
levels. After 15 days, (P � P0 )/P0 = 0.00011, for all time steps used above.
4.6. Test Case 2 and 6: Grid Convergence

For completeness, we present grid convergence results to show that the compatible SEM does not change the formal order
of accuracy of the method and remains competitive with global spectral models. The T213 reference solution provided for
test case 5 has a large uncertainty. At low resolutions most models, including HOMME, have already converged to within
this uncertainty level making the reference solution unusable for grid convergence studies. We will instead use test case
2 and 6. Test case 2 is an analytically known steady state solution of the full nonlinear shallow-water equations. It consists
of solid body rotation for the velocity with the corresponding balanced height field. The height field consists of lows over
each pole. Test case 6 is an R = 4 Rossby-Haurwitz wave which moves from west to east without change of shape in the
Fig. 3. Contour plot of the test case 5 height field h in meters at 15 days from a 2 degree HOMME simulation. The contour interval is 100 m.
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Fig. 4. Relative error in energy conservation after 15 days in shallow water test case 5, using a 2 degree cubed-sphere grid as a function of Dt (seconds). The
error converges to near machine precision at better than a second-order rate.



Fig. 5. Contour plot of the test case 6 height field h in meters at 14 days from HOMME (1-degree resolution). The contour interval is 200 m.
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Fig. 6. Mesh convergence in shallow-water test case 2 (left) and case 6 (right). HOMME’s l1,l2 and l1 relative errors are plotted as a function of Dx (degrees),
the average grid spacing at the Equator. For test case 2, the convergence rate exactly matches the formal accuracy of the method (4th order) shown by the
fainter line. For test case 6, we also show the l2 errors from a spherical-harmonic spectral transform model (labeled SHSTM) and the l2 error uncertainty in
the reference solution (horizontal line).
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non-divergent barotropic equations. This motion is only approximated in the shallow-water equations, so again results from
the NCAR T213 spectral model are used as the reference solution.

The simulations are run with the same configuration used with test case 5: leapfrog-trapezoidal time stepping, degree-3
polynomials and no additional filters or diffusion terms. The number of elements used ranges from 96 for the lowest reso-
lution (representing an average grid spacing of the GLL points at the Equator of 7.5 degrees) to 86,400 for the highest res-
olution (0.25 degree equatorial spacing). The timestep at the lowest resolution is 640 s, decreasing linearly with increasing
resolution. A contour plot of the solution from HOMME at 1 degree resolution after 14 days is shown in Fig. 5.

To show grid convergence, in Fig. 6 we plot the l1,l1 and l2 errors after 5 days (case 2) and 14 days (case 6), normalized as
specified in [42]. For case 2, which has an analytical solution, HOMME obtains a convergence rate which matching the formal
order of accuracy of the method (4’th order in the case of this configuration of HOMME). As is typical for the realistic shal-
low-water test cases without analytic solutions, the l2 error for case 6 converges at a rate less than the formal order of accu-
racy of the method. Here the convergence rate is approximately O((D x)2.6). The convergence stops as the l2 error level
approaches the T213 reference solution l2 error uncertainty (0.0008, from [45,3]) plotted as a horizontal line in the figure.
For comparison, the figure also contains data from T42, T63 and T106 simulations [45,43] from the same model used to gen-
erate the T213 reference solution. This spectral model converges at a rate close to O((Dx)1.5), where Dx is taken to be the grid
spacing of the transform grid at the equator.
5. The inviscid, incompressible Navier–Stokes equations

The shallow-water energy E includes kinetic energy only due to horizontal 2-velocity ~u, but vertical motion ur � @h
@t is in-

cluded implicitly by the variable-height factors that make the E integrand trilinear in~u and h. This trilinearity in turn means
(34) is required to obtain (51). In contrast, the incompressible Navier–Stokes equations for 3-velocity ~w :¼ ~uþ urk̂ conserve a
simpler quadratic kinetic energy 1

2
~w2. However, the replacement of 2D mass conservation (46) by the 3D incompressibility

constraint (54) avoids the (34) requirement but complicates numerical energy conservation.
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Whereas h uniquely specifies a physical, hydrostatic pressure pH = g(H � r), the Navier–Stokes pressure p is a
Lagrange multiplier for enforcing incompressibility. The discrete weak-form problem is to find ~wð�; tÞ 2 V1

cov and p 2 eV0

such that
~w � @
~w
@t

� �
¼ pr �~w
D E

G
� ~w �~að~wÞ
D E

8~w 2 V1
con ð53Þ

and; hwr � ~wiG ¼ 0 8w 2 eV0; ð54Þ
where ~að~wÞ ¼ ðrd � ~wÞ � ~w is nonlinear advection. Because a naı̈ve elimination of ~w between (53) and (54) with eV0 ¼ V0

would lead to spurious modes, typically eV0 is taken to be (4) but with degree ~d ¼ d� 2, and the hiG terms are approxi-
mated by Gauss quadrature [e.g.,[30] ch. 7, [33] ch. 6, [32] ch. 8].To show conservation, we simply take ~w ¼ I con~w (18) in
(53):
d
dt

1
2
~w2

� �
¼ pr �wh iG ¼ 0 if w! p in ð54Þ: ð55Þ
Unpublished simulations using GASpAR [cf. [31]] confirm (55) holds better than if ~að~wÞ ! ð~w � rdÞ~w.
6. Conclusions

The spectral-element method is an arbitrarily high-order finite-element method that is very efficient due to its diagonal
mass matrix. Here we showed that with a careful treatment of the divergence, gradient and curl operators, the method is
compatible on nearly arbitrary unstructured grids in three dimensions. It preserves the local (at the element level) adjoint
relationships of the discrete divergence, gradient and curl operators with respect to the natural spectral-element inner
product and element boundary integral. It also preserves the annihilator properties of these operators. With the
primitive-variable rotational form of the shallow-water equations, these compatible properties result in a discretization that
locally conserves mass and potential vorticity to machine precision and energy to within the time-truncation error. These
results were verified numerically in HOMME, on the cubed-sphere grid, for the standard flow over a mountain and
Rossby–Haurwitz shallow-water test cases for the sphere.
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Appendix A. Matrix expressions

Here we give matrix notation of selected expressions. The set of GLL weights is fwigd
i¼0. The Jm that multiplies Cs arises

from computing n̂ �~gs using (9), (25).
Equation
 Expression
 Definitions
 Descriptions
(7)
 �f TUð~rÞ
 �f :¼ ðf ð~r1Þ; . . . ; f ð~rLÞÞT
 Unique values of f
Uð~rÞ :¼ ðU1ð~rÞ; . . . ;ULð~rÞÞT 2 ðV0ÞL
 Interpolating functions
(15)
 rd �~v jXm
/Tð~xð~r; mÞÞ

P
aDa;mva

m
 Da;m :¼ J�1
m DaJm 2 Rðdþ1Þ3�ðdþ1Þ3
 Divergence matrix for Xm
Jm :¼ diagJm 2 Rðdþ1Þ3�ðdþ1Þ3
 Jacobian matrix for Xm
(16)
 ~ga � rdf jXm
¼ /Tð~xð~r; mÞÞDaf m
 Da :¼ D� I� Id1

a þ I�D� Id2
a

þI� I�Dd3
a 2 Rðdþ1Þ3�ðdþ1Þ3
Gradient matrix
Di;j :¼ duj

dx niÞ ði; j ¼ 0; . . . dÞ
 Derivative matrix
(17)
 ~ga � rd �~v jXm
¼ /Tð~xð~r; mÞÞ

P
cC

ac
m vc;m
 Cac

m :¼
P

b�
abcJ�1

m Db
 Curl matrix
(19)
 hfgiXm
¼ gT

mWmf m
 Wm :¼ ðw�w�wÞJm 2 Rðdþ1Þ3�ðdþ1Þ3
 Mass matrix for Xm
w :¼ diagw 2 Rðdþ1Þ�ðdþ1Þ
 Mass matrix for [�1,1]
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In the next table, we give matrix expressions of the compatible identities:
Eq.
 Expression
 Definitions
 Descriptions
(27)
 h~v � n̂i@Xm
¼ JT

m
P

s svs
m
 s :¼ B�w�wd1

s þw� B�wd2
s

þw�w� Bd3
s 2 Rðdþ1Þ3�ðdþ1Þ3
Boundary-flux matrix for Xm
B :¼ edeT
d � e0eT

0 2 f0; 	1gðdþ1Þ�ðdþ1Þ
 Difference matrix: �c
� to �c

þ

(28)
 WmDs þ DT
s;mWm ¼ Jm s 2 Rðdþ1Þ3�ðdþ1Þ3
 Divergence theorem for Xm
(34)
 QTðWðI�DsÞ þ DT
sWÞQ ¼ QTJðI� sÞQ ¼ 0
 Ds :¼ diagmDs;m 2 RMd�Md
 Divergence theorem for X
J :¼ diag
m

Jm 2 RMd�Md
 Jacobian matrix for X
(36)
 WmCab
m � CbaT

m Wm ¼
P

s�
abs

s

Curl identity for Xm
(44)
 P
aC

abTWPðI�DaÞ ¼ 0
 Cab :¼ diag
m

Cab
m 2 RMd�Md
 Curl-grad compatibility
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